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In this work a multi-objective quantitative structure-property
relationship QSPR analysis approach was reported based on
the study on three partition properties of 50 aromatic sulfur-
containing carboxylates. Here multi-objectives properties
were taken as a vector for QSPR modeling. The quantitative
correlations for partition properties were developed using a ge-
netic algorithm-based variable-selection approach with quantum
chemical descriptors derived from AMI1-based calculations.
With the QSPR models the aqueous solubility octanol/water
partition coefficients and reversed-phase HPLC capacity factors
of sulfur-containing compounds were estimated and predicted.
Using GA-based multivariate linear regression with cross-vali-
dation procedure a set of the most promising descriptors was
selected from a pool of 28 quantum chemical semi-empirical de-
scriptors including steric and electronic types to integrally
build QSPR models. The selected molecular descriptors includ-
ed the net charges on carboxyl group Qoc the 2nd power of
net charges on nitrogen atoms Q% the net atomic charge on
the sulfur atoms Qg the van der Waals volume of molecule

V  the most positive net atomic charge on hydrogen atoms

Ou and the measure of polarity and polarizability =
which were main factors affecting the distribution processes of
the compounds under study. The statistically best QSPR models
of six descriptors were simultaneously obtained by GA-based
linear regression analysis. With the selected descriptors and the
QSPR equations mechanisms of partition action of the Sulfur-
containing carboxylates were able to be investigated and inter-
preted.
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Introduction

Some physicochemical properties of organic pollutants
such as partition properties during an environmental pro-
cess may be affected by the same factors and their action
mechanisms can be discussed together. The useful means

to assess this process is obviously the quantitative struc-
QSAR/QSPR  ap-

proach. Indirect observation of chemical properties is the

ture-activity/property relationship

goal for the extensive use of QSPR approaches for good
reason such as speed and economy. The development of
QSPR can be helpful in the understanding of environmental
action mechanism and can obtain a reliable and predictive
model for predicting the properties of new chemical sub-
stances. Here three partition properties including the
aqueous solubility  octanol/water partition coefficients
and capacity factors of reversed-phase high performance
liquid chromatography HPLC of 50 aromatic sulfur-con-
taining compounds are taken as examples. The reasons for
the selection of these chemicals as investigated objects are

1 These compounds used extensively either as interme-

herbicides and

drugs or as floatation agents and extractants in the petro-
12

diates in the manufacture of pesticides
chemical and metallurgical industries are being intro-
duced into the environment 2 Their partition properties
have been systematically measured and reported in our
lab. Thereinto some data of the latter 20 compounds are
newly measured and reported in this paper and 3 The
data set for these chemicals are much complete and suit-
able for multi-objective modeling study.

In recent years quantum chemical descriptors were
used in the QSAR/QSPR study in environmental chemistry
by some research workers.*” The descriptors derived from
Firstly
quantum chemical descriptors can be applied to predict

quantum computation have several advantages

toxicity and physicochemical properties of new chemicals
before they are synthesized and introduced into environ-
ment. They are favorable to the ecological risk assessment
and management of toxic and harmful chemicals. Thus the
pollution prevention can be realized. Secondly the quan-
tum chemical descriptors have explicit physical meaning
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which led to their convenient application in studying inter-
action modes between toxicants and acceptors and molec-
ular structure features affecting physicochemical environ-
mental properties of organic pollutants with QSAR mod-
els. Especially the quantum chemical descriptors may be
used to perform QSAR/QSPR studies of heterogeneous
compounds . Furthermore they are not restricted to closely
related compounds and can be easily obtained and de-
scribe clearly defined molecular properties. For these rea-
sons there are quite a few examples using quantum semi-
empirical descriptors in the environmental science stud-
jes 815

Genetic algorithms GA always allow the exploration
of the whole experimental space due to the occurrence of
the mutations each possible combination can occur at any
moment. GAs which are based on the principle of Dar-
appear as a powerful tool to optimize
many problems associated with drug design in recent
years. They can be used to develop one or more QSAR or
QSPR models for problems involved in drug or molecular
design . '® The results obtained by GAs are a whole popula-
tion group of solutions the user can then choose the one

usually the statistically best one he prefers taking into
the response dependent and independent variables ac-
count at the same time. The general steps for GA-based
MLR involved in a QSAR/QSPR study include compilation

of a data set calculation of descriptors to numerically en-

winian evolution

code the structure features of the data set compounds fea-
ture selection to choose a small subset of descriptors that
relate molecular structure to physicochemical property
and validation of the models developed.

Arx and coworkers used GA-based methods to deter-
mine reaction rate constants with limited concentration.!”
Gramatica and coworkers employed a genetic algorithm
variable subset selection strategy to select the most repre-
sentative training set and the best descriptors subset for
predicting degradation rate constants koy and k0N3 of or-

ganic compounds in the troposphere . '8

The aim of this study was to set up multi-objective
quantitative relationships with the aqueous solubility oc-
tanol/water partition coefficients and reversed-phase
high-performance liquid chromatographic HPLC capacity
factors of 50 aromatic sulfur-containing carboxylates by us-
ing GA-based multiple linear regression GA-MLR . The
authors try to investigate common factors affecting the three
partition properties. First the theoretical bases of quan-
tum semi-empirical descriptors and GA are briefly present-
ed. The quantum chemical descriptors are used to select
the best subset of descriptive variable combination and be
related to experimental partition properties giving a series
of quantitative models. Then these quantitative correlations
are used to try to explain the environmental action mecha-
nisms of carboxylates in the partition process. The results
should be valuable in evaluating the potential behavior of
suchlike chemicals.

Experimental

Samples

A total of 50 aromatic sulfur-containing compounds
were used as the investigated objects for the QSPR studies
in this work. They were synthesized in our laboratory and
mainly used as intermediates in drug or pesticide develop-
ment. Their purity was monitored by HPLC to ensure that
no interference peak had occurred.

Determination of aqueous solubility

The aqueous solubility of these compounds was deter-
mined by shake-flake according to OECD guideline!® for
testing of chemicals. All operations were conducted at at-
mospheric pressure and 25+0.5 °C. Samples of the so-
lution were centrifuged at 15000 r/min and were quanti-
tatively measured with a UV-spectrophotometer against wa-

ter blank .
Determination of partition coefficients

The octanol/water partition coefficients were deter-
mined by shake-flake method as described by the OECD
guideline! for the testing of these chemicals at atmospheric
pressure and 25 + 0.5 °C followed by centrifuging and
analysis of chemical in the water phase by the method used
for the chemical solubility studies.

Determination of reversed-phase HPLC capacity factors

A Nucleosil C18 column 15 em x 4.6 mm made by
Dalian Institute of Chemical Physics Chinese Academy of
Science  was used with flow rate of 1.0 mL/min at ambi-
ent temperature 20+ 2 C. The detector was set at 230
nm. The mobile phases consist of different volume fraction
of methanol in water 10070 95/5 90/10 85/15 80/
20 75725 70/30  respectively. The column dead time

to was determined by the injection of NaNOj dissolved
in methanol and the capacity factor k' = k"= ig—1t9 /
to of these compounds were measured. ¢y is retention

time.
Calculation of geometric and electronic descriptors

The molecules were sketched as two-dimensional
structures using the CS Chem3D 5.0% software to generate
the starting geometry. Then geometric optimization was
performed to generate three-dimensional representations of
the compounds geometric and electronic properties were
determined by the AM1 method of the MOPAC 97 pro-
gram. With an optimum geometry the molecular surface

2 3

S in nm volume V in nm and ovality O were

calculated by Connolly method.?' 2> Molecular weight
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My was also included. The electronic descriptors such
as dipole moment g in D polarizability « in a.u.
energy of the highest occupied molecular orbital K ygyo in
eV energy of the lowest unoccupied molecular orbital

Eiumo In eV atomic charge in a.c.u. were
achieved. All possible sums of squared charges for each
given element and that of the absolute values of atomic
charges on different functional groups were generated. Be-
cause of the expected nonlinearity of the model all
squared and square-rooted descriptors were generated. The
most negative atomic charge () in a.c.u. and the most
positive charge of a hydrogen atom (Qygin a.c.u. in the
solute molecule were obtained. A total of 28 quantum
chemistry-based steric and electronic descriptors were cal-
culated for each sulfur-containing aromatic compounds.
The data set of full descriptors for QSPR modeling is given

in Table 1.
Variable selection and QSPR model assessment

Using GA-based MLR feature selection procedures

the dependent variables i.e. the three partition proper-

ties were used at the same time to find subsets of quantum
descriptors that provide a set of good relationships with the
partition properties. All of the descriptors were subjected
to multi-objective feature selection to remove those that did
not contribute useful information to the variable pool. This
multi-objective-based feature selection left a set of reduced
and predictive descriptors for the studied compounds. The
reduced dimension set of informative descriptors was then
used to build the quantitative relationships between molec-
ular structure and partition properties using the multivari-
ate linear regression with leave-one-out cross validation

LOOCV procedures. A series of subsets of various sizes
were investigated and used to create statistically valid lin-
ear models with the quality of the model based on the
predicted results with LOOCV  the correlation coefficients
and the root-mean-square error RMSE between the pre-
dicted and experimental values. When adding or omitting
another descriptor to the descriptor combination did not ob-
viously improve the statistics of the models it was deter-
mined that the optimum subset and the best predictive

QSPR models have been obtained for the MLR modeling.

Table 1 Data set of full descriptors discussed in this work

No Descriptor Name

1 My molecular weight

2 Sa van der Waals area of molecule

3 S3 the 2nd power of van der Waals area of molecule

4 0 ovality of molecule

5 0? the 2nd power of ovality of molecule

6 N dipole moment of molecule

7 Qon sum of absolute values of atomic charge on oxygen and nitrogen atoms in the nitro-group

8 Qos sum of atomic charge on oxygen atoms in the sulfinyl/sulfonyl group

9 Qoc sum of absolute values of atomic charge on carbon and oxygen atoms in the carboxyl group
10 On the net charges on nitrogen atoms

11 0% the 2nd power of net charges on nitrogen atoms

12 % the 4th power of net charges on nitrogen atoms

13 Qo net atomic charge on the oxygen atoms

14 3 the 2nd power of net atomic charge on the oxygen atoms

15 Q4 the 4th power of net atomic charge on the oxygen atoms

16 Qs net atomic charge on the sulfur atoms

17 03 the 2nd power of net atomic charge on the sulfur atoms

18 04 the 4th power of net atomic charge on the sulfur atoms

19 4 van der Waals volume of molecule

20 @ average molecular polarizability

21 Enomo energy of the highest occupied molecular orbital

22 E1umo energy of the lowest unoccupied molecular orbital

23 E?umo the 2nd power of energy of the lowest unoccupied molecular orbital

24 Q the largest negative atomic charge on an atom

25 Qu the most positive net atomic charge on hydrogen atoms

26 Fie a measure of polarity and polarizability

27 Eg the magnitude of the difference between E oo of the solute and Ejyyo of water divided by 100
28 E\ the magnitude of the difference between Epyyo of the solute and Eyono of water divided by 100.
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Results and discussion

Calculation

estimation and prediction

ates. Their experimentally measured Sy Koy and ky
values in logarithm mode were reported in our previous
work from No. 1 to 30 in Table 1 **2* and partly in this
work from No. 31 to 50 and are listed in Table 2 to-

The data set The data set was composed of 50 gether with quantum descriptors .
structurally diverse aromatic sulfur-containing carboxyl-

Table 2 Experimental partition properties for 50 sulfur-containing aromatic esters with the quantum descriptors

No. Compound Qoc On2 Qs V x10° Qn T log Sy log Kow log ky
1 2-NO,PhSCH,CO,Me 1.12800 0.38143 0.21490 1.69932 0.19880 0.66880 -0.76000 1.88000 2.28
2 4-Cl-2-NO,PhSCH,CO,Me 1.12420 0.39816 0.41010 1.78056 0.20840 0.73230 -1.70000 2.24000 3.11
3 4-NO,PhSO,C CH, ,CO,Me 1.09990 0.39993 3.00180 2.06369 0.20100 0.63580 -3.38000 1.33000 1.06
4 4-NO,PhSO,C CH; ,COz-i-Pr 1.13380 0.39917 2.99460 2.40682 0.20020 0.62010 -4.26000 2.05000 1.75
5 4-NO,PhSO,C CH; 3COz-i-Pr 1.10030 0.39955 2.95840 2.62021 0.20040 0.59810 -3.76000 2.36000 2.08
6 4-NO,PhSO,C CH; 5CO,-i-Pr 1.06330 0.39904 2.91900 2.95836 0.20020 0.59450 -4.88000 2.84000 3.17
7 4-NO,PhSO,C CH; 4CO,-i-Pr 1.06310 0.39904 2.90830 3.12079 0.20050 0.58720 -5.07000 3.41000 3.55
8 4-BrPhSO,C CH, ,CO,Me 1.13590 0.00000 3.02170 2.05327 0.18480 0.61350 -3.67000 2.32000 1.55
9 4-BrPhSO,C CH, 3CO,Me 1.11290 0.00000 2.96250 2.24166 0.18590 0.59800 -3.55000 2.45000 1.69
10  4-BrPhSO,C CH, ,CO,Me 1.09490 0.00000 2.93360 2.41210 0.18580 0.58830 -4.01000 2.73000 2.12
11 4-BrPhSO,C CH, 5CO,Me 1.05210 0.00000 2.92460 2.58758 0.18680 0.58890 -4.48000 2.94000 2.55
12 4-CIPhSO,C CH, ,CO,Me 1.13680 0.00000 3.02350 1.99421 0.18610 0.61560 -3.31000 2.03000 1.23
13 4-CIPhSO,C CH, 3CO,Me 1.08390 0.00000 2.97370 2.17502 0.18710 0.60170 -3.00000 2.28000 1.40
14  4-CIPhSO,C CH; ,COp-i-Pr 1.13530 0.00000 2.99980 2.35581 0.18680 0.59500 -3.54000 2.64000 1.86
15  4-CIPhSO,C CH, ,CO;,-t-Bu 1.12010 0.00000 2.99990 2.54031 0.18660 0.58160 -4.12000 2.68000 2.19
16  4-CIPhSO,C CH; 4CO,-i-Pr 1.07690 0.00000 2.93550 2.71206 0.18660 0.57220 -4.65000 3.16000 2.61
17 4-CIPhSO,C CH, 5CO,-i-Pr 1.04590 0.00000 2.92410 2.90672 0.18760 0.56960 -5.54000 3.49000 3.01
18  4-CIPhSO,C CH; ¢CO,-i-Pr 1.04700 0.00000 2.91350 3.05509 0.18740 0.56620 -5.52000 3.83000 3.55
19  4-MePhSO,C CH, ,CO,-i-Pr 1.12750 0.00000 3.00100 2.36910 0.17220 0.59790 -3.23000 2.52000 1.60

20  4-MePhSO,C CH, 3CO-i-Pr 1.07140 0.00000 2.95230 2.59201 0.17270 0.57650 -3.34000 2.78000 1.81
21 4-MePhSO,C CH, ,CO,Me 1.13690 0.00000 3.02320 2.02214 0.17170 0.61630 -2.88000 1.77000 1.02
22 4-MePhSO,C CH, ,COEt 1.14090 0.00000 3.00100 2.18927 0.17240 0.61050 -3.01000 2.23000 1.31
23 4-MePhSO,C CH, ;COyEt 1.10150 0.00000 2.97230 2.40522 0.17290 0.58500 -2.96000 2.31000 1.47
24 4-MePhSO,C CH; 4CO-i-Pr 1.07830 0.00000 2.93860 2.73863 0.17180 0.57310 -3.91000 2.88000 2.24
25  4-MePhSO,C CH; 5CO;-i-Pr 1.04770 0.00000 2.92840 2.93338 0.17320 0.57020 -4.62000 3.21000 2.67
26  4-MePhSO,C CH, 5CO,Me 1.05540 0.00000 2.93000 2.55559 0.17370 0.59020 -4.61000 2.54000 1.90
27  PhSO,C CH, ,CO,Me 1.13620 0.00000 3.02230 1.85338 0.17290 0.61390 -2.26000 1.43000 0.66
28  PhSO,C CH, 3CO,Me 1.11380 0.00000 2.96500 2.04110 0.17340 0.59620 -3.00000 1.63000 0.85
29  PhSO,C CH, 4CO,Me 1.09700 0.00000 2.93660 2.21158 0.17310 0.58540 -2.55000 1.98000 1.13
30  PhSO,C CH, 5CO,Me 1.05470 0.00000 2.92770 2.38745 0.17460 0.58510 -3.85000 2.30000 1.52
31  4-NO,PhSO,CH Me CO,Me 1.10100 0.39917 2.96100 2.03624 0.22300 0.61064 -2.96000 1.06000 0.65
32 4-NO,PhSO,C Me ,CO,Me 1.08400 0.39942 2.94000 2.19266 0.20200 0.60493 -3.39000 1.38000 0.94
33 4-NO,PhSO,C Et ,CO,Me 1.05000 0.39942 2.91000 2.51677 0.18700 0.59942 -4.18000 2.24000 1.64
34 4-NO,PhSO,C n-Bu ,CO,-Me 1.15800 0.31259 2.84700 3.24524 0.20100 0.58433 -5.55000 3.38000 3.13
35  4-NO,PhSO,C CH,Ph ,CO,Me 0.97100 0.31360 2.80200 3.48368 0.18170 0.68023 -6.24000 4.46000 3.38
36  4-NO,PhSO,C n-Bu ,CO,Et 1.06900 0.39917 2.92200 3.42052 0.20160 0.55512 -5.76000 3.81000 3.47
37 E—tNozphSOzC Me  CHaPh COo- 1.03500 0.39930 2.91900 3.04362 0.20100 0.63707 -5.44000 3.40000 2.34
38 +-NOPHSO,C Me — CH,CH = 1.07700 0.39917 2.93900 2.64507 0.20160 0.60505 -4.56000 2.30000 1.71

CH, CO,Et
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No. Compound Qoc On2 Qs Vv x10° Qu T log Sy log Kow log kv
4-NO,PhSO,C Me CH;-
39 1.02800 0.39955 .92000 3.40780 0.20180 0.69065 -5.83000 4.40000 3.18
oc -Naph CO,Et
40  4-NO,PhSO,C n-Bu ,COz-i-Pr 1.10200 0.39942 2.90600 3.62379 0.19930 0.54722 -5.85000 4.06000 3.62
4-NO,PhSO,CH Me CO,CH-
41 CH 0.93900 0.3139%4 .83800 2.81509 0.18190 0.59170 -4.61000 2.82000 2.11
25
42 ;NOZPhSOzCH CHACOEE €O 20200 0.39879 2.96600 2.55532 0.22000 0.62239 —3.04000 1.40000 1.03
e
4-NO,PhSO,CH CH,COp-i-Pr -
43 COnei-Pr 1.93400 .31304 .83700 3.13158 0.19880 0.58207 -4.29000 2.18000 1.97
i
44 4'502%50” CHCOEE €07 ) 33700 0.39791 3.00600 3.83582 0.20060 0.59690 —4.81000 3.56000 3.06
-rr
45  4-NO,PhSO,C = CHPh CO,Me 1.11700 .39904 .03600 2.53133 0.19870 0.72973 -4.57000 2.90000 1.55
46  4-NO,PhSO,C =CHPh COEt 1.12400 0.39904 3.03500 2.72796 0.17270 0.70994 -4.62000 3.20000 1.95
47  4-NO,PhSO,C = CHPh CO,-i-Pr  1.00600 .31382 .88500 2.91975 0.17810 0.68931 -5.07000 3.62000 2.26
48 ;-NOZ PhSO, €= CHPhCO,-i- 1.00300 .31382 .88400 3.08706 0.19830 0.68006 -5.28000 3.68000 2.42
u
49  4-MePhSO,C = CHPh CO,-i-Pr 1.12700 .00000 .03500 2.87511 0.18580 0.67250 -15.50000 3.92000 2.28
50  4-CIPhSO,C =CHPh CO-i-Pr  1.12500 0.00000 3.03400 2.86916 0.18000 0.66828 —5.65000 4.18000 2.41
Variable selection and regression analysis The full log Kow = - 5.0855 — 0.9577Qoc — 2.16340% -
sets of quantum parameters were used to select a set of 0.3022Qs + 1.9338V + 5.9907Qy +
promising common descriptive variables and correlate the 6.4873x 2
partition properties i.e. log Sy log Kow and log kv
of these comp'ounds using the GA-bas.ed MLR. As th'e GA- N=50 Rey=0.9720 RMSEcy = 0.2006
based regression procedure was manipulated a variety of
correlation models were obtained for these three partition
. ) : Jiee partt log ky = — 0.5670 — 0.9075Q0c — 1.3535Q% -
properties. Here seven six and five-descriptor quantita- 08891 1. 734V 13.1111
tive models for log Sw log Kow and log kw respectively ) Os + 1. * ) Ou -
were investigated. The statistics of the 7- 6- and 5-pa- 0.97097 3
rameter models for the partition properties are listed in
Table 3. According to Table 3 the correlation coefficients N =50 Rcy=0.9086 RMSEcy=0.3395

RMSE and the

R¢y  and root-mean-square

R and the root-mean-square errors
LOOV correlation coefficients
RMSECV
the 6-parameter models are much close to those derived
and better than those de-
the F

statistics for the 6-parameter models are found the best.

errors calculated for the data set derived from

from the 7-parameter models
rived from the 5-parameter models. Especially

This resulted in the focus of this study on the 6-parameter
models given as follows

log Sy = 8.2317 + 1.4708 Q¢ + 1.29500% — 0.5938 0
~2.1681V =20.14000y - 5.0883x 1

N=50 Rcy=0.9501 RMSE.y=0.3638

Applying multiple linear regression procedure the
best models containing 6 descriptors were developed with
root-mean-square error RMSE and correlation coefficient
of 0.3203 and 0.9613 for log Sy 0.1661 and 0.9806 for
and 0.2644 and 0.9457 for log kw. The parti-

tion properties estimated for 50 compounds in the data set

lOg K()W

are listed in Table 4. The partition property values are
plotted against the corresponding experimental values giv-
enin Fig. 1.

A cross-validation technique was employed to verify
the predicted performance of the routine models and pre-
dict the partition properties of each compound in data set.
Average regression coefficients of 50 sulfur-containing aro-
matic carboxylates obtained by cross-validation are ex-

pressed as above.
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Table 3 Statistics of 7- 6- and 5-parameter models for the partition properties
Model Dependent variable R RMSE Rey RMSE ¢y F

log Sy 0.9660 0.3006 0.9549 0.3452 83.7672

’ log Kow 0.9832 0.1531 0.9715 0.1988 173.9329
parameter

log kw 0.9478 0.2594 0.9079 0.3409 52.9710

log Sw 0.9613 0.3203 0.9501 0.3638 87.3136

6 log Kow 0.9806 0.1661 0.9720 0.2006 179.0849
parameter

log kw 0.9457 0.2644 0.9086 0.3395 60.6480

log Sw 0.9536 0.3500 0.9418 0.3910 88.3206

> log Kow 0.9393 0.2876 0.9251 0.3184 65.9745
parameter

log ky 0.9281 0.3028 0.8867 0.3759 54.6772

Table 4 Observed and calculated values of log Sy log Koy and log ky and quantum descriptors for the sulfur-containing compounds

log Sw log Kow log kv
No- Calc.* Res.? Cve Calc.“ Res.? Cve Calc. Res.? Cve
1 -0.8341 0.0741 -0.9255 1.7600 0.1200 1.6119 2.6387 -0.3587 3.0813
2 - 1.6265 -0.0735 -1.5545 2.2950 -0.0550 2.3489 2.6526 0.4574 2.2046
3 -3.1727 -0.2073 —-3.1405 1.4083 -0.0783 1.4205 0.8610 0.1990 0.8301
4 -3.7675 -0.4925 -3.7233 1.9366 0.1134 1.9264 1.4441 0.3059 1.4167
5 —-4.1495 0.3895 -4.1812 2.2499 0.1101 2.2410 1.9043 0.1757 1.8900
6 -4.8920 0.0120 -4.8929 2.9277 -0.0877 2.9345 2.5674 0.6026 2.5207
7 -5.2070 0.1370 -5.2197 3.1997 0.2103 3.1803 2.8729 0.6771 2.8102
8 -3.1871 -0.4829 -3.1511 1.9712 0.3488 1.9452 1.1429 0.4071 1.1126
9 —-3.5375 -0.0125 -3.5368 2.2814 0.1686 2.2718 1.5762 0.1138 1.5697
10 -3.8650 —-0.1450 -3.8572 2.5735 0.1565 2.5650 1.9252 0.1948 1.9147
11 -4.3263 -0.1537 -4.3160 2.9664 -0.02064 2.9682 2.2923 0.2577 2.2751
12 -3.0957 -0.2143 -3.0772 1.8769 0.1531 1.8637 1.0520 0.1780 1.0366
13 —-3.4854 0.4854 -3.5182 2.2081 0.0719 2.2033 1.4879 -0.0879 1.4938
14 -3.7771 0.2371 -3.7907 2.4554 0.1846 2.4448 1.7376 0.1224 1.7306
15 -4.1273 0.0073 -4.1278 2.7386 -0.0586 2.7420 2.0852 0.1048 2.0791
16 -4.4772 -0.1728 -4.4641 3.0706 0.0894 3.0638 2.4919 0.1181 2.4830
17 —4.9449 -0.5951 - 4.8798 3.4693 0.0207 3.4670 2.8872 0.1228 2.8737
18 -5.2374 -0.2826 -5.1989 3.7351 0.0949 3.7221 3.1564 0.3936 3.1028
19 —-3.5388 0.3088 -3.5582 2.4195 0.1005 2.4132 1.5727 0.0273 1.5710
20 -3.9769 0.6369 -4.0186 2.7832 -0.0032 2.7834 2.0851 -0.2751 2.1031
21 -2.8695 -0.0105 -2.8684 1.8492 -0.0792 1.8572 0.9116 0.1084 0.9008
22 -3.1974 0.1874 -3.2114 2.1419 0.0881 2.1353 1.2356 0.0744 1.2300
23 -3.5868 0.6268 -3.6253 2.4435 -0.1335 2.4517 1.7068 -0.2368 1.7214
24 -4.2411 0.3311 -4.2670 3.0368 -0.1568 3.0491 2.3396 -0.0996 2.3474
25 -4.7157 0.0957 -4.7245 3.4354 -0.2254 3.4562 2.7391 -0.0691 2.7454
26 -3.9981 -0.6119 -3.9654 2.8297 -0.2897 2.8452 2.0554 -0.1554 2.0637
27 -2.5160 0.2560 —-2.5472 1.5154 -0.0854 1.5258 0.6352 0.0248 0.6322
28 —-2.8420 -0.1580 -2.8285 1.8054 -0.1754 1.8203 1.0594 -0.2094 1.0772
29 -3.1584 0.6084 -3.2024 2.0879 -0.1079 2.0957 1.4054 -0.2754 1.4253
30 -3.6254 -0.2246 -3.6132 2.4782 -0.1782 2.4879 1.7800 -0.2600 1.7941
31 —-3.4034 0.4434 -3.5696 1.3367 -0.2767 1.4405 1.1621 -0.5121 1.3541
32 -3.3027 -0.0873 -3.2908 1.4985 -0.1185 1.5146 1.2003 -0.2603 1.2357
33 -3.7075 -0.4725 -3.6340 2.0413 0.1987 2.0103 1.6348 0.0052 1.6340
34 - 5.4083 -0.1417 -5.3956 3.5394 -0.15%4 3.5536 3.1858 —-0.0558 3.1908
35 -6.2715 0.0315 -6.2784 4.6976 -0.2376 4.7500 3.4661 -0.0861 3.4851
36 -5.7150 -0.0450 -5.7069 3.5678 0.2422 3.5237 3.4263 0.0437 3.4184
37 -5.3508 -0.0892 —-5.3441 3.4001 -0.0001 3.601 2.7114 -0.3714 2.7396
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Continued
N log Sy log Kow log kw
0.
Calc.* Res.? Cve Calc . Res.? CVe Calc. Res.® CVe
38 -4.2862 -0.2738 —-4.2655 2.3793 -0.0793 2.3853 1.9958 -0.2858 2.0173
39 -6.4397 0.6097 -6.5781 4.4626 -0.0626 4.4768 3.3135 -0.1335 3.3438
40 -6.0109 0.1609 -6.0485 3.8685 0.1915 3.8237 3.7442 -0.1242 3.7732
41 —4.4435 -0.1665 - 4.4240 2.8505 -0.0305 2.8541 2.3790 -0.2690 2.4104
42 -3.0935 0.0535 -3.1379 1.3976 0.0024 1.3955 1.1364 -0.1064 1.2245
43 -3.9582 -0.3318 -3.8624 2.5506 -0.3706 2.6576 2.2639 -0.2939 2.3488
44 —-4.9945 0.1845 -5.1955 3.3989 0.1611 3.2233 2.8771 0.1829 2.6778
45 -4.6145 0.0445 -4.6264 2.8834 0.0166 2.8790 1.5149 0.0351 1.5055
46 - 4.4056 -0.2144 -4.3139 2.9732 0.2268 2.8762 1.5325 0.4175 1.3541
47 -5.0200 -0.0500 -5.0116 3.5853 0.0347 3.5794 2.3154 -0.0554 2.3248
48 -5.7464 0.4664 -5.8143 3.9730 -0.2930 4.0157 2.8862 -0.4662 2.9541
49 -5.3103 -0.1897 -5.2678 3.9537 -0.0337 3.9612 2.5360 -0.2560 2.5934
50 -5.1615 -0.4885 -5.0782 3.8823 0.2977 3.8315 2.4563 -0.0463 2.4642
@ Calc. the results calculated from the Eqs. 1 — 3 *CV  the cross-validated results. ¢ Res. differences between the observed and calcu-
lated values.
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Fig. 1 Plots of observed vs. calculated partition properties for 50 aromatic carboxylates .
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Fig. 2 Plots of observed vs. cross-validated partition properties for 50 aromatic carboxylates .

The predicted partition property values of 50 sulfur-
containing aromatic carboxylates are also listed in Table 4.
The plots of predicted partition properties by cross-valida-
tion versus the observations are given in Fig. 2. It was
found that the cross-validated results are acceptable on the
whole for the aqueous solubility and octanol-water partition
coefficients. The reversed-phase HPLC capacity factors

predicted by the cross-validation however seem not ac-
ceptable because the difference between Rcy and R is
much high. The CV results in Fig. 2 show that 3 log ky
values i.e. No. 1 No. 2 and No. 31 predicted by
Eq. 6 has observable difference from log ky values ob-
served. This is because only No. 1 and No. 2 have
phenylthio- groups while the others all have phenylsul-
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fonyl- groups. And No. 31 is the least in size in the 48
phenylsulfonyl compounds. In other words the partition
properties of No. 31 may be boundary values in the full
data set. So the regression equation without these three
samples No. 1 No. 2 and No. 31 as well as statistics
were obtained and expressed as follows

log kw = —6.788 — 1.0896Q ¢ — 1.0891 Q% + 1.4461 Qs
+1.8382V + 14.7247 0y - 2.65187 4

N=47 R =0.9595 RMSE =0.225 Rcy = 0.9440
RMSEcy =0.263 F =77.391

The reversed-phase HPLC capacity factors predicted
by Eq. 4 are better than those predicted by Eq. 3. Es-
pecially the cross-validated results and F' statistics are ob-
viously improved.

Variable correlation problems

According to the principle of statistics a regression
equation is of no relevance when the explanatory variables
applied were mutually interrelated by simple or multiple
correlations. Here the bivariate correlation of two sets of

Table 5

was investigated . As it was shown by the correlation coeffi-

variables including the dependent variables
cients of the independent variables given in Table 5 the
six-parameter models for modeling partition properties have

cleared up the possibility .

Table 5 Correlation coefficients of variables selected for modeling

Qoc Q% Qs |4 Qu T
Qoc 1.0000
0% 0.2028  1.0000
Qs 0.0303 -0.2449 1.0000
V. 0.2089 0.3246 0.3123 1.0000
Qu 0.3775 0.7325 -0.2297 0.1659 1.0000

r -0.0637 0.3618 -0.3718 -0.1213 0.1553 1.0000

Mechanism analysts of partition action

According to this group of the statistically best equa-
tions Eqs. 1 — 3 with 6 descriptors and all the other
results obtained the partition mechanism can be ex-
plained. Here the Q¢ term is the sum of atomic charges
of carbon and oxygen atoms in the carboxyl group. This
case demonstrated that the carboxyl group played a domi-
nant role in the partition mechanisms and may imply the
polar interaction of hydrogen-bond interaction between the
carboxyl group and the strong polar molecules i.e. wa-
ter methanol molecules. Such hydrogen-bond interaction
resulted in phenylsulfonyl acetate molecules existing a ten-
dency to partition into the water and mobile phase. QF is

the 2nd power of net charges on nitrogen atoms. Similarly

the positive or negative effects of the Q% term show that log
Sw increases and log Koy and log kyw decrease with in-
creasing electrostatic interactions among the solvent and ni-
tro-group in solute molecules such as the hydrogen-bond-
ing formation. This directly resulted in phenylsulfonyl ac-
etate molecules to partition into the water and mobile
phase. The V term denotes the van der Waals volume of
the solute molecule. The negative or positive signs with V
agree with theoretical expectation log Sy decreases log
Kow and log ky increase with increasing cavity formation
energy in water or in water-methanol mixture phase or
increasing preference for solute-solvent dispersion interac-
tions resulting in solute molecules to tend to partition in
to the weak polar phase such as octanol phase or the im-
mobile phase. The Qg term denotes the most positive net
atomic charge on hydrogen atoms that renders the ability to
donor proton of the solute molecules. Because the ability
to donor proton of the water molecules is much more than
that of the solute molecules it took a negative action in
water solution process and positive actions in octanol-wa-
ter partition and chromatographic process tended to parti-
tion into the octanol phase and immobile phase to form
weak hydrogen-bond interaction with the octanol molecules
and oxygen atoms at the Si—O0—Si skeleton in the immo-
bile phase. The log Sy log Kow and log kw have nega-
tive positive and negative signs - + and — for
the 7 term respectively which is a measure of polarity
and polarizability . Tt is expected to be involved since it is
in direct proportion to intrinsic molecular volume and
molecular volume is a measure of the energy to form a cav-
ity in the solvent. The positive signs indicate that larger
molecules tend to partition into the less polar phase i.e.
the octanol phase or the immobile phase. The particularly
interesting thing is that the log Sy log Kow and log kv
for the Qg term and this
seems unreasonable. In Table 2 there are two compounds
containing the thio —S— groups 2-NO,PhSCH,-
COOCH; 1  4-Cl-2-NO, PhSCH, COOCH; 2 in the
full data set which are not homogeneous compounds

while the other 48 compounds contain sulfonyl —SO0,—

all have negative signs —

groups. Their occurrence directly affected the interpreta-
tion of the (s term based on the MLR equations. When
these two compounds are omitted from the whole data set
the rebuilt models are obtained and the constant coeffi-
cients for the new models are given in Table 6. The signs
of the constant coefficients are the same as those in Egs.

1—3
term with negative for log Sy both positive for log Kow

except for the constant coefficients for the Qg

and log k. This result may indicate that there is a weak
repulsive interaction between the sulfur atom in phenylsul-
fonyl acetate molecules and the oxygen atoms in the polar
molecules . e. the water molecules or methanol mole-

cules.
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Table 6 Constant coefficients for QSPR modeling without samples

1 and 2
Descriptor b

log Sy log Kow log kv

bo 7.667 -11.513 -6.557
Qoc 1.458 -1.099 —-1.035

% 1.290 -1.980 -1.032

Qs -0.422 2.037 1.542

v -2.156 2.078 1.892

On -19.916 5.636 10.855

s -5.091 5.401 -2.671

Conclusion

The multi-objective quantitative structure-property re-
lationships were successfully developed based on three
partition properties in this study. And main factors affect-
ing the partition process for these sulfur-containing aromat-
ic compounds were discussed. Although some of these
quantitative models built may not be more predictive than
those theoretical models built based on individual partition
properties as objectives they may be more favorable and
reasonable for the mechanism discussion on multi-proper-
descriptors were also

ties and the selected independent

more interpretative and informative.
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